ECE 204 Numerical methods

The bracketed secant method a.ka. the falsegposition method or regula falsi

Douglas Wilhelm Harder, LEL, M.Math.

Introduction

- In this topic, we will
- Describe a modification to the bisection method
- Find the root of the interpolating linear polynomial
- Try to determine the rate of convergence with an empirical example
- Discuss some differences
- Look at an implementation

A secant line

- Suppose we have a real-valued function of a real variable and suppose that a_{k} and b_{k} are two points such that $f\left(a_{k}\right)$ and $f\left(b_{k}\right)$ have opposite signs
- If f is continuous, then f must have a root on $\left[a_{k}, b_{k}\right]$

A secant line

- What is the root of the line connecting $\left(a_{k}, f\left(a_{k}\right)\right)$ and $\left(b_{k}, f\left(b_{k}\right)\right)$?

$$
\begin{aligned}
& f\left(a_{k}\right)+\frac{f\left(b_{k}\right)-f\left(a_{k}\right)}{b_{k}-a_{k}}\left(x-a_{k}\right) \\
& f\left(a_{k}\right)+\frac{f\left(b_{k}\right)-f\left(a_{k}\right)}{b_{k}-a_{k}}\left(x-a_{k}\right)=0 \\
& \frac{f\left(b_{k}\right)-f\left(a_{k}\right)}{b_{k}-a_{k}}\left(x-a_{k}\right)=-f\left(a_{k}\right) \\
& x-a_{k}=-f\left(a_{k}\right) \frac{b_{k}-a_{k}}{f\left(b_{k}\right)-f\left(a_{k}\right)} \\
& x=a_{k}-f\left(a_{k}\right) \frac{b_{k}-a_{k}}{f\left(b_{k}\right)-f\left(a_{k}\right)}
\end{aligned}
$$

A secant line

- What is the root of the line connecting $\left(a_{k}, f\left(a_{k}\right)\right)$ and $\left(b_{k}, f\left(b_{k}\right)\right)$?
- This formula is usually simplified to

$$
r_{k} \leftarrow \frac{f\left(b_{k}\right) a_{k}-f\left(a_{k}\right) b_{k}}{f\left(b_{k}\right)-f\left(a_{k}\right)}
$$

- This, however, is subject to subtractive cancellation
- Thus, we will adopt

$$
\begin{aligned}
& r_{k} \leftarrow a_{k}-f\left(a_{k}\right) \frac{b_{k}-a_{k}}{f\left(b_{k}\right)-f\left(a_{k}\right)} \\
& r_{k} \leftarrow a_{k}-f\left(a_{k}\right) / f^{(1)}\left(a_{k}\right)
\end{aligned}
$$

A secant line

- Thus, given two bounds a_{k} and b_{k} such that $f\left(a_{k}\right)$ and $f\left(b_{k}\right)$ have opposite signs
- Find the root

$$
r_{k} \leftarrow a_{k}-f\left(a_{k}\right) \frac{b_{k}-a_{k}}{f\left(b_{k}\right)-f\left(a_{k}\right)}
$$

- If $f\left(r_{k}\right)=0$, we have found a root, so we are done
- If $f\left(a_{k}\right)$ and $f\left(r_{k}\right)$ have opposite signs,

$$
\text { let } a_{k+1} \leftarrow a_{k} \text { and } b_{k+1} \leftarrow r_{k}
$$

- Otherwise, $f\left(r_{k}\right)$ and $f\left(b_{k}\right)$ have opposite signs, let $a_{k+1} \leftarrow r_{k}$ and $b_{k+1} \leftarrow b_{k}$

A secant line

- How does convergence occur?
- One of the end-points usually becomes fixed
- Thus, in this example $b_{k}-a_{k}>b_{k}-r$
- In theory, the root could be arbitrarily close to the other end-point, so the maximum error could be $b_{k}-a_{k}$
- However, we will keep iterating until $r_{k}-a_{k}<\varepsilon_{\text {step }}$ or $b_{k}-r_{k}<\varepsilon_{\text {step }}$

Example

- Find the first root of $2 \mathrm{e}^{-2 x}-e^{-x}$
- The solution is $\ln (2)$

Error analysis

- It seems the error is dropping by a factor of 0.65
- Thus is a constant times the previous error, so $\mathrm{O}(h)$
- The issue is that one end-point is fixed
- Solution?
- Alternate between the bracketed secant method and the bisection method

Implementation

```
double bracketed_secant( double f( double x ), double a, double b,
    double eps_step, double eps_abs,
    unsigned int max_iterations ) {
assert( a < b );
double fa{ f( a ) };
double fb{ f( b ) };
if ( !std::isfinite( fa ) || !std::isfinite( fb ) ) {
    return NAN;
}
if ( fa == 0.0 ) {
        return a;
}
if ( fb == 0.0 ) {
    return b;
}
```


Implementation

```
for ( unsigned int k{0}; k < max_iterations; ++k ) {
    double r{ a - fa*(b - a)/(fb - fa) }; // This avoids overflow
    double fr{ f( r ) };
    if ( !std::isfinite( fr ) ) {
        return NAN;
    }
    if ( fr == 0.0 ) {
        return r;
    } else if ( std::signbit( fa ) == std::signbit( fr ) ) {
    if ( ((r - a) < eps_step) && (std::abs( fr ) < eps_abs) ) {
        return r;
    }
                                    r}k=\mp@subsup{a}{k}{}<\mp@subsup{\varepsilon}{\mathrm{ step }}{}\mathrm{ and }|f(\mp@subsup{r}{k}{})|<\mp@subsup{\varepsilon}{\mathrm{ abs }}{},\mathrm{ return }\mp@subsup{r}{k}{
        a = r;
        fa = fr;
    } else {

\section*{Implementation}
```

 } else {
 if (((b - r) < eps_step) && (std::abs(fr) < eps_abs)) {
 return r;
 }
 b
 b = r;
 fb = fr;
 }
 }
return NAN;

```
\}

\section*{Summary}
- Following this topic, you now
- Considered a modification to the bisection method
- Find the root of the interpolating linear polynomial
- Looked at an example
- Understood that the rate of convergence is no better than the bisection method
- Considered an implementation

\section*{References}
[1] https://en.wikipedia.org/wiki/Regula_falsi

\section*{Acknowledgments}

Tazik Shahjahan for pointing out typos.

\section*{Colophon}

These slides were prepared using the Cambria typeface. Mathematical equations use Times New Roman, and source code is presented using Consolas. Mathematical equations are prepared in MathType by Design Science, Inc.
Examples may be formulated and checked using Maple by Maplesoft, Inc.
The photographs of flowers and a monarch butter appearing on the title slide and accenting the top of each other slide were taken at the Royal Botanical Gardens in October of 2017 by Douglas Wilhelm Harder. Please see https://www.rbg.ca/
for more information.


\section*{Disclaimer}

These slides are provided for the ECE 204 Numerical methods course taught at the University of Waterloo. The material in it reflects the author's best judgment in light of the information available to them at the time of preparation. Any reliance on these course slides by any party for any other purpose are the responsibility of such parties. The authors accept no responsibility for damages, if any, suffered by any party as a result of decisions made or actions based on these course slides for any other purpose than that for which it was intended.```

